Subject Index

absolute refractoriness, See event deletion
action potentials, 50, 204
amygdala, 42
central nervous system, 42
hippocampus, 42
integrate-and-reset model, See integrate-and-reset process(es)
medulla, 42
reticular formation, 42
somatosensory cortex, 42
surrogate data analysis, 227
thalamus, 42
visual-system interneuron, 42, 167–168, 265–267, 344, 345
Allan, David W., viii, 68, 269, 276
Allan factor, 68
Allan variance, 68, 269
alternating fractal renewal process(es), 172–173, 177–182
autocorrelation, 183–184
autocovariance, 178, 183
chain of Markov processes, 178–179
computer network traffic, 173, 334–335
dwell times, 174
fractal binomial noise, 173, 181
fractal Gaussian process, 173, 181–182
fractal test signals, 173, 184
ion channels, 41, 173
nanoparticle fluorescence fluctuations, 173
nerve-membrane voltage fluctuations, 173
rainfall, 173
subject index

semiconductor noise, 173
spectrum, 177, 183
sums of, 173, 181
systems with fractal boundaries, 173
alternating renewal process(es), 172–182
alternating fractal renewal process,
See alternating fractal renewal process(es)
autocorrelation, 175
Bernoulli random variables, 174
binomial noise, 173, 179–181
burst noise, 172
characteristic function, 175, 183
dwell times, 174
exponential dwell times, 176–177
extreme asymmetry, 176
Gaussian process, 181–182
moments, 174–175
on–off process, 172
random telegraph signal, 172
relation to renewal point process,
176
spectrum, 175–177, 183
sums of, 173, 179–181

amygdala, See action potentials
attention-deficit hyperactivity disorder, 44
auditory nerve fiber, See action potentials
Barnes, James, 269, 276
Bartlett, Maurice, 94, 201, 202
Bartlett–Lewis process, See cascaded process(es)
Berger, Jay, 153, 154
Bernoulli random deletion, See event deletion
Bernoulli, Jakob, 225, 226
binomial noise
as a sum of alternating renewal processes, 173, 179–181
autocorrelation, 179–181
binomial distribution, 179
convergence to a Gaussian process,
181–182
fractal, See fractal binomial noise
moments, 179
bivariate point process, See point process(es)
block shuffling, See operations on point processes
blocked counter, See event deletion
bootstrap method, See operations on point processes
box-counting dimension, See dimension
branching process, See cascaded process(es)
Brownian motion, 19–21
as a neuronal threshold, 149–150
Bachelier process, 19
definition, 19–20
diffusion process, See power-law behavior
fractal-based point process from,
149–150
generation of, 150
history, 19
relation to fractional Brownian motion,
137
Wiener–Lévy process, 19
zero crossings, 15
Burgess variance theorem, 231
burst noise, See alternating renewal process(es)
Cantor, Georg, 9
Cantor set, 17–19
fat, 18
Hausdorff–Besicovitch dimension, 75
membership, 47
photonic multilayer-structure version, 40
randomized version, 95
semiconductor multilayer-structure version, 40
triadic, 17
variant, 46, 133–134
capacity dimension, See dimension
capacity-dimension scaling function, See dimension
cascaded process(es), 93–95
applications of, 202, 323
Bartlett–Lewis, 94, 98–99, 324
branching, 95
cluster, 93
compound, 93
doubly stochastic Poisson process version, 95, 333, 336, 346
fractal Bartlett–Lewis, 218–219, 335–336, 345–351
fractal Neyman–Scott, 336–337, 345–351
Neyman–Scott, 93, 202, 204, 324
Poisson branching, 95
Thomas, 95, 206
Yule–Furry, 95
central limit theorem, 36, 173, 174, 181, 188, 191, 216, 306
central nervous system, See action potentials
Čerenkov radiation, See photon statistics
chaos, 25–32
fractal attractors, 25
fractals, connection to, 24–32
functional roles, 25
phase-randomization surrogate, 227
strange attractors, 25
characteristic function, See interval statistics
cluster process, See cascaded process(es)
coastline(s)
Australian, 6
British, 6
fractal, 2–4
Höfn, 2, 6
Icelandic, 2, 6, 13–15
length of, 2–4, 6, 14
Seyðisfjörður, 2, 6
South African, 6
compound process, See cascaded process(es)
computer cache misses, 155
computer communication networks, See computer network traffic
computer network traffic, 313–354
alternating fractal renewal process, 173, 334–335
analysis and synthesis, 332
applications layer, 323
arrival process, 317
as a point process, 50
bit transmission, 323
blocking probability, 319
buffer occupancy, 316
buffer overflow probability, 319–321, 325, 334, 351–352
buffer size, 316
CAIDA, 322
capacity-dimension scaling function, 343
cascaded-process models, 335–337, 345–351
characteristic features of, 342–343
computer communication networks, 320–323, 328, 332
data sources, 117, 325
detrended fluctuations, 338, 340, 341, 348, 349
drop probability, 319
event clustering, 345
exponentialized data, 250, 251, 326, 327, 337, 343, 345
extended alternating fractal renewal process, 335
feedback, 332
file transfers, 323
flow control, 333
fluid-flow models, 331
forward Kolmogorov equation, 318, 351
fractal Bartlett–Lewis process, 218, 335–336, 345–351
fractal exponents, 44, 126, 343–344
fractal features, 16, 40, 324–332
fractal-Gaussian-process-driven Poisson process, 335, 352–353
fractal Neyman–Scott process, 204, 328, 333, 335–337, 345–353
fractal-rate point process, 342
fractal renewal process, 334
fractal-shot-noise-driven Poisson process, 204, 335–337
fractional Brownian motion, 325, 331
FTP, 323, 329, 335, 336
general arrival and service processes, 317
generalized dimension, 343
geometric queue-length distribution, 318, 319, 328, 351–352
heavy-tailed service times, 328, 333, 337
HTTP, 323, 335
internetwork layer, 323
interval histogram, 130, 131, 233,
244, 338, 340–344, 348, 349,
351
interval sequence, 337, 340, 341,
348, 349
interval spectrum, 128, 339–341,
344, 348, 349
interval statistics, 350–351
interval wavelet variance, 129, 338,
340, 341, 344, 348, 349
IP , 322–323
ISP , 322
link layer, 323
Little’s law, 318
local-area network, 325
Markov process, 317, 325, 327, 328
message-loss probability, 328, 332
model complexity, 332–333
modeling, 332–337, 345–351
modulated fractal-Gaussian-process-
driven Poisson process, 353
monofractal approximation, 353–
354
multifractal features, 16, 329, 331–
332, 353–354
multiple data sets, 341–342
multiple servers, 317, 319, 351
multiple statistical measures, 337–
340
normalized Haar-wavelet variance,
119, 235, 325–327, 330, 339–
341, 344, 348, 349, 351, 353
normalized variance, 126, 127
packets, 50, 315, 323, 325
PASTA, 319
periodicities, 342
persistence, 329
physical layer, 323
point-process description, 330–331
point-process identification, 271, 337–
351
power-law file sizes, 33, 323, 329–
330, 335, 336
power-law queue-length distribu-
tion, 328, 352
predictability, 329
queue length, 316–318
queue waiting-time jitter, 328
queue-length distribution, 317, 318,
325, 328, 334, 351, 353
queueing theory, 316–320, 327–329,
336–337
randomly deleted data, 234, 235,
344
randomly displaced data, 245, 246
rate-process description, 330–331,
334, 338, 340, 341, 348, 349
rate spectrum, 118, 234, 325–326,
339–341, 344, 348, 349, 351
rescaled range, 338, 340, 341, 348,
349
resemblance to striate-cortex action
potentials, 345, 351
scale-free networks, 37–38, 40, 321–
322
scaling cutoffs, 330
second-order statistics, 325–328, 340,
341, 348, 349
server utilization, 318
service process, 317
service ratio, 318, 328
shuffled data, 253, 254, 326, 327,
337, 342–344, 351, 352
simulations, 332–333, 345–353
SSH, 323, 329
static representation, 322
TCP, 323, 329, 334
teletraffic theory, 315
TELNET, 323, 335
transport layer, 323
UDP, 329
vertical layers, 323
video traffic, 325, 330
waiting number mean, 318
waiting time mean, 318
wide-area network, 325
World Cup access log, 330
WWW, 325
correlation dimension, See dimension
counting statistics, 63–70
\(\alpha \)-particle counting, 64
accidents, 64, 147
Allan factor, 68
Allan variance, 68, 269
autocorrelation, 69, 71, 72, 106–
107, 121, 124, 132, 222, 232,
282, 296, 311
autocovariance, normalized form, 69, 285–287
count sequence, 51, 63
counting distribution, 64, 65, 146–147, 163, 205–206, 218, 263–264
counting-time increments, 297–298
counting-time oversampling, 302–304
counting-time weighting, 298–302
cross-spectrum, 78
dead-time-modified point process, 145, 227, 238, 240, 263–264
decimated point process, 263–264
dispersion ratio, 66
doubly stochastic Poisson process, See doubly stochastic Poisson process(es)
deviation ratio, 66
dimensional moments, 65, 83, 87, 161
Fano factor, 66
fractal renewal process, See fractal renewal process(es)
fractal-shot-noise-driven point process, See fractal-shot-noise-driven point process(es)
generalized rates, 64
generalized version of normalized Haar-wavelet variance, 69
homogeneous Poisson process, See homogeneous Poisson process
index of dispersion, 66
integrate-and-reset process, See integrate-and-reset process(es)
kurtosis, 65
moments, 65–66
negative binomial distribution, 146
Neyman Type-A distribution, 202, 206, 209, 212
noncentral negative binomial distribution, 147
normalized Daubechies-wavelet variance, 120
normalized general-wavelet variance, 74, 113–114, 120, 296–297
normalized Haar-wavelet covariance, 77–78
normalized Haar-wavelet variance, relation to normalized variance, 62, 68–69, 112, 209–211, 284, 296, 344
normalized wavelet cross-correlation function, 77
periodic processes, 64
periodogram, 70
rate-based measures, 64
relation to interval statistics, 65, 344
relationship among measures, 114–115
renewal process, See renewal process(es)
sample rate, 64
shot-noise-driven Poisson process, See doubly stochastic Poisson process(es)
skewness, 65
Thomas distribution, 206
variance-to-mean ratio, 66
Cox, David R., vi, viii, 81, 88
Cox process, See doubly stochastic Poisson process(es)
cross-spectrum, See counting statistics
data-transmission errors, See fractal renewal process(es)
dead-time deletion, See event deletion
decimation, See event deletion
deletion, See event deletion
detrended fluctuation analysis, See interval statistics
developmental disorders, 44
developmental insults, 44
diffusion processes, See power-law behavior
dilation, See operations on point processes
dimension
 box-counting, 12, 14, 75, 164, 237
 Cantor set, 18
 Cantor-set variant, 46
 capacity, 12, 14, 75, 96, 131, 164, 237
 capacity-dimension scaling function, 131, 132, 343
 correlation, 75, 96
 Euclidian, 11, 23, 35, 75, 223
 generalized, 74–76, 96, 130–132, 256, 332, 343
 generalized-dimension scaling function, 76, 131, 132, 266, 267
 Hausdorff–Besicovitch, 75
 information, 75
 Kolmogorov entropy, 75
 monofractal, 18, 75, 121
 multifractal, 75
 of a space, 11
 of an object, 11
 of diffusion processes, 34–35
 of point processes, 75–76, 96, 111, 121, 126, 130–132, 256, 272, 332, 343
 Rényi entropy, 74
 topological, 11, 75
 wavelet estimate of, 75
Dirac delta function, special property of, 92, 228
coincidence rate, 88
counting statistics, 88–89
dead-time-modified, 237–241
exponential interval density, 89–90, 125, 249, 272, 281
factorial moments, 88
fractal-binomial-noise-driven, 174, 182, 183, 272
fractal-Gaussian-process-driven, 124–125, 145, 183, 217, 229, 249, 270, 275–281, 310, 328, 335, 352–353
fractal-lognormal-noise-driven, 250
fractal-rate-driven, 124, 262
fractal-shot-noise-driven, See fractal-shot-noise-driven point process(es)
 integrated rate, 88
 interval density, 89
 interval statistics, 89–90
 multistage shot-noise-driven, 95
 random deletion of, 236
 rate coefficient of variation, 89–90, 281
 renewal version of, 90
 shot-noise-driven, 90, 202–204
 simulation of, 270, 310
 spectrum, 88
 superposition of, See superposition
 drug abuse, 44
 earthquakes, 33, 40, 77, 150, 155, 204, 222–223
 emotional state, 44
 equilibrium counter, See event deletion
 Erlang, Agner Krarup, 97, 313, 315, 316, 319
 Euclidian dimension, See dimension
 event deletion, 226, 229–241
 Bernoulli random deletion, 226, 227, 230–236, 262–263, 344
 blocked counter, 236, 264
 Burgess variance theorem, 231
decimation, 97, 226, 227, 230–232, 262–264
decimation parameter, 231
doubly stochastic Poisson process,
See doubly stochastic Poisson process(es)
effects on fractal features, 229–231, 236
equilibrium counter, 236, 264
experimental interval histograms, 232–233
experimental normalized Haar-wavelet-variance curves, 235
experimental rate spectra, 234
fractal onset frequency, 232, 241
fractal onset time, 232, 241
fractal renewal process, See fractal renewal process(es)
general results, 229–231
homogeneous Poisson process, See homogeneous Poisson process
limit of a homogeneous Poisson process, 232
periodic process, 232–236
renewal process, See renewal process(es)
type-\(_p\) dead time, 236
unblocked counter, 236, 263, 264
excitable-tissue recordings, 41
expansion-modification systems, 37
exponentialization, See operations on point processes
extended dead time, See event deletion

Fano factor, 66
Fatt & Katz, 45
Feller, William, vi, 225, 237
fern, 22
Fibonacci sequences, See photonic materials, See semiconductors
fixed dead time, See event deletion
fluorescence fluctuations of nanoparticles, See alternating fractal renewal process(es)
Fourier, Jean-Baptiste, 101–102
fractal analysis, See fractal parameter estimation
fractal-based point processes, See point process(es)
fractal binomial noise
as a rate function, 174, 182–183, 272, 334
as a sum of alternating fractal renewal processes, 173, 181
convergence to a Gaussian process, 181–182
fractal-binomial-noise-driven gamma process, 183
fractal chi-squared noise, 145–147
as a rate function, 150–151
fractal exponential noise, 146
fractal noncentral chi-squared noise, 147
fractal noncentral Rician-squared noise, 147
negative binomial counting distribution, 146
noncentral negative binomial counting distribution, 147
fractal exponent(s)
auditory nerve fiber, See action potentials
computer network traffic, See computer network traffic
diffusion, See power-law behavior estimation of, See fractal parameter estimation
for fractal Bartlett–Lewis process, 219
for fractal point process, 121
for fractal-rate process, 124
for fractal shot noise, See fractal shot noise
for multifractals, 15, 75, 331
for nonstationary nonfractal processes, 110, 112, 133
for normalized general-wavelet variance, 113–114
for normalized Haar-wavelet variance, 111–114
from autocorrelation, 110–111
from count-based autocovariance, 287
from interval spectrum, 126–128, 295
from normalized Daubechies-wavelet variance, 120
from normalized detrended fluctuations, 291
from normalized Haar-wavelet variance, 117–119, 235, 246, 251, 254, 278, 299, 303
from normalized interval wavelet variance, 127–129, 293
from normalized rate spectrum, 116–118, 234, 245, 250, 253
from normalized rescaled range, 289
from normalized variance, 109–110, 126, 127, 285
from rate spectrum, 307
human heartbeat, See heartbeat
Hurst exponent, 137, 143–144, 287, 289
lateral geniculate nucleus, See action potentials
limited range of, 109–111
negative values of, 107–109, 133
observed values of, 109
range of values, 107–114
relations among, 105, 107, 114–115, 133
relative strength of fluctuations, 103, 273
retinal ganglion cell, See action potentials
same exponent from different fractal renewal processes, 166
spectrum, 133
striate cortex, See action potentials
superposition, See superposition
time varying, 331
under exponentialization, 250, 251, 264
under general deletion, 229–231
under random deletion, 234, 235
under random displacement, 245, 246
under shuffling, 253, 254
values in biological systems, 34
vesicular exocytosis, See vesicular exocytosis
visual-system interneuron, See action potentials
fractal exponential noise, 146
fractal Gaussian process(es), 144–145
as a rate function, 145, 216–217
as a sum of alternating fractal renewal processes, 173, 181–182
nomenclature for fractional processes, 143–145
fractal lognormal noise, 147–149
as a rate function, 148–149, 151–152
rate statistics, 147–148
fractal networks, See scale-free networks
fractal noncentral chi-squared noise, 147
fractal noncentral Rician-squared noise, 147
fractal parameter estimation, 269–312
asymptote subtraction, 312
autocovariance, 285–287
bias from cutoffs, 274
bias/variance tradeoff, 311
choice of scaling range, 274
coincidence-rate limitations, 311
comparison of measures, 309–310
count-based measures, 282–287
counting-time increments, 297–299, 303
counting-time oversampling, 302–304
counting-time weighting, 298–302
detrended fluctuations, 289–291
discrete-time processes, 274
estimator variance, 273
heart rate variability, 274–275
interval-based measures, 287–296
interval spectrum, 294–296
interval wavelet variance, 291–293
limitations of, 310
maximum-likelihood approach, 274
nonparametric approach, 273–274
normalized general-wavelet variance, 296–297
normalized Haar-wavelet variance, 276–281, 296–304, 344
normalized variance, 127, 282–285, 296, 311, 344
optimal measures, 271, 309
rate spectrum, 133, 304–309, 311
rescaled range, 287–289
robustness/error tradeoff, 311
simulations, 270, 275–278, 284–295, 297, 299, 303, 305, 307, 310, 312
speed/accuracy tradeoff, 274
fractal point processes, See point process(es)
fractal-rate point processes, See point process(es)
fractal renewal process(es), 87, 124, 131, 132, 154–166, 281
capacity dimension, 164
characteristic function, 155, 156, 166
coincidence rate, 159–160
comparison with homogeneous Poisson process, 122
computer cache misses, 155
computer network traffic, 334
counting distribution, 163
data-transmission errors, 40, 154, 166–167
earthquake occurrences, 155
effect of interval-density exponent, 157
factorial moments, 160–161
features of, 122
forward recurrence time, 262
fractal exponents, 158
fractal onset frequency, 166
generalized inverse Gaussian density, 156
generalized Pareto density, 165
interneuron counterexample, 167–168, 265–267
interval density, 155–157
interval density with abrupt cutoffs, 155
interval density with smooth transitions, 156–157
interval moments, 155, 156
molecular evolution, 168–169
nondegenerate realization, 164–166
normalized Haar-wavelet variance, 162
normalized variance, 160–162
Pareto density, 154–155
point-process spectrum, 157–159, 166
random deletion of, 236, 263
same fractal exponent from different interval densities, 166
simulation time, 166, 312
stable distribution, 157
superposition of, See superposition trapping in semiconductors, 169, 224
Wald’s Lemma, 164
fractal shot noise, 186–197
amplitude statistics, 189–193
as a rate function, 90, 202–205
autocorrelation, 194–195
characteristic function, 189–190
cumulants, 190
degenerate, 188, 193
fractal exponents, 195–197
Gaussian limit, 145, 188
impulse response function, 187–188, 202, 205
integrated, 204–205
mass distributions, 198–199
multifractal impulse response function, 331
parameter ranges, 188, 189
point processes from, See doubly stochastic Poisson process(es)
power-law-duration variant, 188–189, 198, 336, 352
spectrum, 188, 195–197
stable distribution, 188, 192, 193, 197
sums of, 198
fractal-shot-noise-driven integrate-and-reset process, See fractal-shot-noise-driven point process(es)
fractal-shot-noise-driven point process(es), 202–217
applications of, 204
applications of the Neyman Type-
A distribution, 202
applications of the shot-noise-driven
Poisson process, 202
Čerenkov radiation, 220–222
coincidence rate, 214
computer network traffic, 328, 335–
337, 352–353
counting distribution, 205–206
counting statistics, 205–212
design of, 220
diffusion, 223
earthquakes, 222–223
factorial moments, 207–208
forward recurrence time, 212–213
fractal exponents, 209, 211, 214,
215
fractal-Gaussian-process-driven limit,
216–217
fractal-shot-noise-driven integrate-
and-reset process, 217
fractal-shot-noise-driven Poisson pro-
cess, 90, 202–217
Hawkes point process, 217
impulse response function without
cutoffs, 220
interval density, 212–213, 219, 272
multifractal version, 331
Neyman–Scott process, 202, 204
Neyman Type-A distribution, 202,
206
normalized Haar-wavelet variance,
210–212
normalized variance, 208–209, 219
self-exciting point process, 217
semiconductor particle detectors, 223–
224
spectrum, 215–216
fractal-shot-noise-driven Poisson process,
See fractal-shot-noise-driven
point process(es)
fractals
and Kant, 33
and Kohlrausch, 33
and Laplace, 33
and Leibniz, 33
and Weber, 33
and Weierstraß, 33
artificial, 16–21
chaos, connection to, 24–32
costlines, 2–4, 6
covrgence to stable distributions,
35–36
deterministic, 13, 16–19, 21–22
diffusion processes, 34–35
dynamical processes, 13
examples of fractals, 16–23, 28–
30, 33, 115–120
examples of nonfractals, 23–24, 26–
28
expansion-modification systems, 37
highly optimized tolerance, 37
historical antecedents, 32–33
in art, 45
in ecology, 26, 41
in human behavior, 43–44
in mathematics, 39–40
in medicine, 43–44
in music, 116
in the biological sciences, 41–44
in the neurosciences, 41–43
in the physical sciences, 39–40
in the psychological sciences, 42,
43, 45, 116
in vehicular-traffic flow, 4, 44, 45,
50, 116
laws of physics, 33–34
lognormal distribution, 36, 147
long-range dependence, 14–15
natural, 16, 21–23
noninteger dimension, 14
objects, 4
onset frequencies, 114–115
onset times, 114–115
origins of fractal behavior, 32–39,
329–330
Pareto’s Law, 33
pink noise, 115–116
power-law behavior, connection to,
14, 32–39
putative exponential cutoff, 39
random, 13, 16, 19–23
range of time constants, 38–39, 332
recognizing the presence of fractal
behavior, 44–45
salutary features of fractal behav-
ior, 41, 45
scale-free networks, 37–38, 45
scaling, connection to, 13–15
self-organized criticality, 37
static, 13
ubiquity of fractal behavior, 39–44

fractals in human behavior
attention-deficit hyperactivity disorder, 44
developmental disorders, 44
developmental insults, 44
drug abuse, 44
mood fluctuations, 43

fractals in mathematics
convergence to stable distributions, 35–36
fractal geometry, 40
lognormal distribution, 36

fractals in medicine
blood flow, 116
congestive heart failure, 275
fluctuations in human standing, 43
heart rate variability, 43–44, 270, 274–275
pain relief, 45
sensitization of baroreflex function, 45

fractals in the neurosciences
action potentials in auditory nerve fibers, 42, 131, 145, 147, 249
action potentials in central-nervous-system neurons, 42, 131
action potentials in isolated preparations, 41–42
action potentials in visual-system neurons, 42, 77, 131, 183, 217, 267
cognitive processes, 43, 116
electroencephalogram fluctuations, 116
excitable-tissue fluctuations, 41, 92, 116, 149, 151, 173
ion-channel transitions, 41, 151, 173
neuronal avalanches in slice preparations, 42
sensory detection and estimation, 42–43, 45
vesicular exocytosis, 41, 131, 132, 149, 151–152

fractals in the physical sciences
Čerenkov radiation, 34, 40, 204, 220–222
computer network traffic, 40, 313–354
data-transmission errors, 40, 154, 166–167
diffusion processes, 34–35, 204, 223
earthquake occurrences, 33, 40, 77, 150, 155, 204, 222–223
highly optimized tolerance, 37
laws of physics, 33–34
light scattering, 36, 40, 173
photons, 40
self-organized criticality, 37, 222
semiconductors, 34, 39, 40, 116, 169, 172, 173, 223–224

fractional Brownian motion, 136–141
as a model for computer network traffic, 325, 331
as a rate function, 140–141
autocorrelation, 137, 150
autocorrelation coefficient, 150
definition, 21, 137
generalized dimensions, 139–140
generation by fractional integration, 144
history, 136
Hurst exponent, 137
level crossings, 138
nomenclature for fractional processes, 143–145
ordinary Brownian motion, See Brownian motion
properties, 138–139
realizations, 139–140
relation of Hurst and scaling exponents, 143–144
relation to fractional Gaussian noise, 141
relation to ordinary Brownian motion, 137
self-similarity, 138
stationary increments, 137, 150
synthesis, 139
Wigner–Ville spectrum, 138–139
zero crossings, 15

fractional Gaussian noise, 141–142
as a rate function, 142
definition, 141
generalized dimensions, 142
generation by fractional integration, 144
in a Langevin equation, 35
nomenclature for fractional processes, 143–145
properties, 141–142
realizations, 142–143
relation of Hurst and scaling exponents, 143–144
relation to fractional Brownian motion, 141
synthesis, 142
Wigner– Ville spectrum, 141–142
gamma renewal process, See renewal process
Gauss, Carl Friedrich, 36, 171, 173
generalized dimension, See dimension
generalized-dimension scaling function, See dimension
generalized inverse Gaussian density, 156
Grand Canyon river network, 22
Greenwood, Major, 49, 64, 147
Gutenberg– Richter Law, 33
Haar, Alfréd, 68, 101, 102
Hausdorff–Besicovitch dimension, See dimension
heart rate variability, 44, 270, 274–275
heavy-tailed distributions, See interval statistics
highly optimized tolerance, 37
hippocampus, See action potentials
Holtsmark distribution, 193
dead-time-modified, 237–238, 249, 262–264
decimated, 97, 263–264
factorial moments, 84
moments, 83
human standing, 43
Hurst, Harold Edwin, 59, 269, 287
Hurst exponent, See fractal exponent(s)
hypothesis testing, See operations on point processes
Icelandic coastline, 14
index of dispersion, See counting statistics
information dimension, See dimension
integrate-and-reset process(es), 91–93
dead-time-modified, 237, 241
decimated, 231
fractal-binomial-noise-driven, 174, 183
fractal-Gaussian-process-driven, 145, 243
fractal-shot-noise-driven, 217
gamma-distributed rate, 98
identification of, 273
interval density, 92
interval moments, 92
interval statistics, 91–92
kernel for heartbeat model, 293, 310
leaky, 93
model for action potentials, 91
modulated rate, 98, 110, 112
normalized variance, 96
oversampled sigma-delta modulator, 91
packet generation, 334
point-process spectrum, 91
randomly deleted, 236
time-varying threshold, 92–93, 149
interevent-interval transformation, See operations on point processes
interneuron, See action potentials
interval statistics, 54–62
autocorrelation, 20, 57, 83, 282
characteristic function, 55–56
coefficient of variation, 55, 231, 233, 236, 345
cumulants, 55, 56
density, 55, 89–90, 121, 129–130, 227, 281
detrended fluctuation pseudocode, 62
detrended fluctuation statistic, 61–62, 79, 282
detrended fluctuation statistic, normalized form, 62, 289–291
discriminating among fractal-rate processes, 310–311
distribution, 281
doubly stochastic Poisson process, See doubly stochastic Poisson process(es)
exponential density, 83, 89–90, 92, 97, 125
fractal renewal process, See fractal renewal process(es)
fractal-shot-noise-driven point process, See fractal-shot-noise-driven point process(es)
heavy-tailed distributions, 13, 56, 57, 328, 333, 337
homogeneous Poisson process, See homogeneous Poisson process
infinite moments, 56, 79, 165
integrate-and-reset process, See integrate-and-reset process(es)
interval ordering, 90, 227, 247–254, 256, 281, 345
kurtosis, 55, 79, 175, 179
limitations of, 122–124, 281–282, 344
moments, 55, 60
normalized wavelet variance, 59
Pareto distribution, 57, 138, 154, 155, 165
periodic processes, 64, 96
periodogram, 70
power-law distribution, See fractal renewal process(es)
recurrence time, 56, 65, 79, 80, 96
relation to counting statistics, 65, 344
rescaled range pseudocode, 60
rescaled range statistic, 59–60, 79, 282
rescaled range statistic, normalized form, 60, 287–289
semi-invariants, 55
serial correlation coefficient, 57
shot-noise-driven Poisson process, See doubly stochastic Poisson process(es)
skewness, 55, 79, 175, 179
subexponential distributions, 57
survivor function, 55–57, 165, 238, 259–262
wavelet transform, 58
Weibull distribution, 57, 328
interval transformation, See operations on point processes
ion channels, See alternating fractal renewal process(es)
Isham, Valerie, vi
Kenrick, Gleason W., 172
knockout mice, 227
Kolmogorov, Andrei, 135–136
Lapicque, Louis, 81, 91
lateral geniculate nucleus, See action potentials
laws of physics, See power-law behavior
Leyden-jar discharge, 33, 39
light scattering, See fractals
logistic equation, 26, 37
logistic map, 26, 28, 30, 46
lognormal distribution, 36, 57, 147
long-range dependence, 15
Lévy, Paul, 35, 36, 171, 174
Lévy dust, See point process(es)
Lévy-stable distributions, See stable distributions
Mandelbrot, Benoît, viii, 4, 135, 136, 153, 154
marked point process, See point process(es)
medulla, See action potentials
mixed Poisson process, See doubly stochastic Poisson process(es)
molecular evolution, See fractal renewal process(es)
monofractals, 15–16, 274, 331
mood fluctuations, 43
multidimensional point process, See point process(es)
multifractals, 15–16, 75, 188, 331–332, 353–354
multivariate point process, See point process(es)

Newton’s Law, 34
Neyman, Jerzy, 94, 201, 202
Neyman Type-A distribution, See counting statistics
Neyman–Scott process, See cascaded process(es)
Nile river flow patterns, 59, 116, 269
noncentral limit theorem, 174
nonextended dead time, See event deletion
nonfractal(s)
Euclidian shapes, 6–7, 23
examples of, 14, 23–24, 26–28, 46
generalized dimensions, 75, 96
heart rate variability measures, 43, 275
homogeneous Poisson process, See homogeneous Poisson process influences, 279
orbits in a two-body system, 24
point processes, See point process(es)
radioactive decay, 24, 50
nonparalyzable dead time, See event deletion
nonstationary point process, See point process(es)
normalization, See operations on point processes
normalized Haar-wavelet covariance, See counting statistics
normalized Haar-wavelet variance, See counting statistics
normalized variance, See counting statistics
normalized wavelet cross-correlation function, 77
normalizing transformation, See operations on point processes

Omori’s Law, 33

on–off process, See alternating renewal process(es)
operations on point processes
block shuffling, 255, 262
bootstrap method, 255
event deletion, See event deletion
event-time displacement, 145, 226, 242–247, 251, 254, 255, 262
hypothesis testing, 126, 247, 253, 254, 271
imposed by experimenter, 227
imposed by measurement system, 227
interval displacement, 242
interval exponentialization, 226, 227, 249–251, 255, 261, 264–267, 326, 327, 337, 343, 345
interval normalization, 249
interval transformation, 226, 247–251, 261–262
intrinsic to underlying process, 227
phase randomization, 227
point-process identification, 255–256
superposition, See superposition surrogate data, 15, 126, 227, 247, 253, 265–267, 271
time dilation, 226, 228–229, 262

Palm, Conny, 50, 82, 257, 313, 315, 316
paralyzable dead time, See event deletion
Pareto, Vilfredo, 33, 153–154
Pareto’s Law, 138, 154
Penck, Albrecht, 1–2
periodogram, See counting statistics, See interval statistics
phase randomization, See operations on point processes
photon statistics
betaluminescence, 202
cathodoluminescence, 202
Čerenkov radiation, 34, 40, 204, 220–222
in presence of atmospheric turbulence, 36
in presence of dead time, 263
radioluminescence, 202
scattered light, 40
superposed coherent and thermal light, 147
thermal light, 146
photonic materials
diffractals, 40
fractal reflectance, 40
fractal transmittance, 40
group-velocity reduction, 40
light scattering, 40
multilayer structures, 40
phase screen, 40
pseudo-bandgaps, 40
Poincaré, Henri, 9, 25, 174
point process(es), 4–5, 50–80, 82–99
Bartlett–Lewis, See cascaded point process(es)
bivariate, 77
branching, See cascaded process(es)
capacity dimension, 164
cascaded, See cascaded process(es)
coincidence rate, 70–72, 74, 80, 105–106, 110–111, 133, 159–160, 214
correlation in a bivariate process, 77–78
count-based measures, 63–70
deleted, See event deletion
doubly stochastic Poisson, See doubly stochastic Poisson process(es)
early work, 50
estimation of, See fractal parameter estimation
examples of, 4, 79, 82–99
filtered general, 197–198
fractal, 76, 121–123, 131, 255
fractal-based, 4–5, 120–124, 130
fractal behavior in, 115–120
fractal parameter estimation, See fractal parameter estimation
fractal-rate, 76, 123–124, 251, 255, 345
fractal renewal process, See fractal renewal process(es)
fractal-shot-noise-driven, See fractal-shot-noise-driven point process(es)
from Brownian motion, 149–150
from fractal binomial noise, 182–183
general measures of, 70–76
Hawkes, 217
homogeneous Poisson, See homogeneous Poisson process
ininitely divisible cascade, 123, 331
integrate-and-reset, See integrate-and-reset process(es)
intermittency, 122
interval-based measures, 54–62
limitations of measures, 282
Lévy dust, 15, 95–96, 138
marked, 54, 77, 176, 222, 334
measures of fractal behavior, 103–107
modulated integrate-and-reset, See integrate-and-reset point process(es)
monofractal, 131
multidimensional, 82
multifractal, 123
multivariate, 77
Neyman–Scott, See cascaded point process(es)
nonfractal, 96, 124–125, 131
nonstationary, 71, 110, 112, 133–134
operations on, See operations on point processes
ordinary, 52–54, 66, 75, 79, 95, 96, 110, 174, 197, 206, 220
periodic, 91, 232–236
renewal, See renewal process(es)
right-continuous, 51
self-exciting, 217
sinusoidally modulated, 98
spectrum, 72–74, 80, 88, 91, 97, 103, 111, 115, 121, 122, 124,
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson, Simeon Denis</td>
<td>49, 63</td>
<td></td>
</tr>
<tr>
<td>Poisson process</td>
<td></td>
<td>See homogeneous Poisson process</td>
</tr>
<tr>
<td>Power-law behavior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- anharmonic-oscillator energy</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- Čerenkov radiation</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- computer file sizes</td>
<td>33, 323, 329–330, 335, 336</td>
<td></td>
</tr>
<tr>
<td>- Coulomb’s Law</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- diffusion processes</td>
<td>34–35, 204, 223</td>
<td></td>
</tr>
<tr>
<td>- dipole field</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- expansion-modification systems</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>- fractal exponent</td>
<td>See fractal exponent(s)</td>
<td></td>
</tr>
<tr>
<td>- fractals, connection to</td>
<td>14, 32–39</td>
<td></td>
</tr>
<tr>
<td>- Gutenberg–Richter Law</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>- harmonic-oscillator energy</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- highly optimized tolerance</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>- Hooke’s Law</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- hydrogen-atom energy</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- infinite-quantum-well energy</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- interval distribution</td>
<td>See fractal renewal process(es)</td>
<td></td>
</tr>
<tr>
<td>- Kepler’s Third Law</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- Langmuir–Childs Law</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- laws of physics</td>
<td>33–34</td>
<td></td>
</tr>
<tr>
<td>- line of charge</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- logistic equation</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>- lognormal distribution</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>- mass distributions</td>
<td>198–199</td>
<td></td>
</tr>
<tr>
<td>- Newton’s Law</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- Omori’s Law</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>- Pareto’s Law</td>
<td>33, 138, 154–155, 165, 198, 346</td>
<td></td>
</tr>
<tr>
<td>- preservation of</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>- quadrupole field</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- quantum number</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- relationships among measures</td>
<td>114–115</td>
<td></td>
</tr>
<tr>
<td>- Richardson’s Law</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>- rigid-rotor energy</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- scale-free networks</td>
<td>37–38</td>
<td></td>
</tr>
<tr>
<td>- scaling functions</td>
<td>3, 12–13</td>
<td></td>
</tr>
<tr>
<td>- self-organized criticality</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>- stable distributions</td>
<td>35–36</td>
<td></td>
</tr>
<tr>
<td>- superposed relaxation processes</td>
<td>38–39</td>
<td></td>
</tr>
<tr>
<td>- time functions</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- van der Waals force</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Queueing theory</td>
<td>See computer network traffic</td>
<td></td>
</tr>
<tr>
<td>Random deletion</td>
<td>See event deletion</td>
<td></td>
</tr>
<tr>
<td>Random telegraph signal</td>
<td>See alternating renewal process(es)</td>
<td></td>
</tr>
<tr>
<td>Rate spectrum</td>
<td>See counting statistics</td>
<td></td>
</tr>
<tr>
<td>Recovery function</td>
<td>See event deletion</td>
<td></td>
</tr>
<tr>
<td>Refractoriness</td>
<td>See event deletion</td>
<td></td>
</tr>
<tr>
<td>Relative dead time</td>
<td>See event deletion</td>
<td></td>
</tr>
<tr>
<td>Relative refractoriness</td>
<td>See event deletion</td>
<td></td>
</tr>
<tr>
<td>Renewal process(es)</td>
<td>85–87</td>
<td></td>
</tr>
<tr>
<td>- alternating</td>
<td>See alternating renewal process(es)</td>
<td></td>
</tr>
<tr>
<td>- coincidence rate</td>
<td>85–86</td>
<td></td>
</tr>
<tr>
<td>- decimated Poisson process</td>
<td>97, 263–264</td>
<td></td>
</tr>
<tr>
<td>- doubly stochastic Poisson version of</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>- event deletion</td>
<td>See event Poisson process</td>
<td></td>
</tr>
<tr>
<td>- exponential density</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>- factorial moments</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>- fractal</td>
<td>See fractal renewal process(es)</td>
<td></td>
</tr>
<tr>
<td>- gamma density</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>- gamma density for computer network traffic</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>- history of</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>- invariance to shuffling</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>- operations on</td>
<td>See operations on point processes</td>
<td></td>
</tr>
<tr>
<td>- random deletion of</td>
<td>236, 263</td>
<td></td>
</tr>
<tr>
<td>- relation between interval and counting statistics</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>- spectrum</td>
<td>86–87, 97</td>
<td></td>
</tr>
<tr>
<td>- superposition of</td>
<td>See superposition</td>
<td></td>
</tr>
<tr>
<td>- Rényi dimension</td>
<td>See dimension</td>
<td></td>
</tr>
<tr>
<td>- rescaled range analysis</td>
<td>See interval statistics</td>
<td></td>
</tr>
<tr>
<td>- reticular formation</td>
<td>See action potentials</td>
<td></td>
</tr>
<tr>
<td>- retinal ganglion cell</td>
<td>See action potentials</td>
<td></td>
</tr>
<tr>
<td>Rice, Steven O.</td>
<td>147, 185, 186</td>
<td></td>
</tr>
</tbody>
</table>
Richardson, Lewis Fry, 1–3
Rudin–Shapiro sequences, See semiconductors

scale-free networks, 37–38, 40, 321–322
scaling, See fractals
scaling cutoffs, See fractal exponent(s)
scaling exponents, See fractal exponent(s)
Schottky, Walter, 185, 186
Scott, Elizabeth, 201, 202
self-organized criticality, 37
semiconductors
fractional scaling exponents, 34
multilayer structures, 40
noise in, 39–40, 116, 169, 172, 173
particle detectors, 223–224
range of time constants, 39
trapping in, 169, 224
semi-experiments, See operations on point processes
shot noise, 186–187
amplitude, 186–187
as a rate function, 90
filtered general point process, 197–198
fractal, See fractal shot noise
Gaussian limit, 186, 191
generalized, 187
impulse response function, 202
shuffling, See operations on point processes
sick time, See event deletion
somatosensory cortex, See action potentials
spectral smoothing, 117, 128, 326, 339
spectrum, See counting statistics, See interval statistics, See point processes
spike trains, See action potentials
stable distributions, 35–36, 79, 157, 174, 192, 193
stochastic dead time, See event deletion
striate cortex, See action potentials
superposition
alternating renewal processes, 41, 173, 179–182
doubly stochastic Poisson processes, 258–259
fractal-based and homogeneous Poisson processes, 273
fractal-based point processes, 258, 261, 310
fractal content, 262
fractal Gaussian process and modulating stimulus, 145
fractal ion-channel transitions, 42
fractal renewal processes, 260–261
harmonic functions, 101
packet arrival times, 323
periodic series of events, 81
point processes, 84–85, 227, 256–261
Poisson-process limit, 85
relaxation processes, 38–39
renewal processes, 259–260, 334
secondary events comprising, 218
surrogate data, See operations on point processes
survivor function, See interval statistics
synapse, See vesicular exocytosis
television network traffic, 40, 84, 97, 154, 166–167, 313, 315–320, 324
tent map, 46
thalamus, See action potentials
thinning, See event deletion
Thomas distribution, See counting statistics
Thomas process, See cascaded process(es)
Thue–Morse sequences, See photonic materials, See semiconductors
time dilation, See operations on point processes
time series, 4
topological dimension, See dimension
translation, See operations on point processes
triadic Cantor set, See Cantor set
type-p dead time, See event deletion
unblocked counter, See event deletion
Van Ness, John W., viii, 135, 136
variance-to-mean ratio, See counting statistics

visual-system interneuron, See action potentials

Wald’s Lemma, 164, 237

wavelet(s)
 computer-network-traffic analysis, 336
 Daubechies, 120
 estimating the generalized dimension, 75
 generating fractional Brownian motion, 139
 Haar, 101, 269
 higher-order moments, 332
 interval wavelet variance, See interval statistics
 normalized Daubechies-wavelet variance, See counting statistics
 normalized general-wavelet variance, See counting statistics
 normalized Haar-wavelet covariance, See counting statistics
 normalized Haar-wavelet variance, See counting statistics
 removing trends, 62, 113
 transform, 58, 67, 74
 Weibull distribution, 57, 328
 Wiener–Khintchine theorem, 73

Yule, G. Udny, 49, 64, 95, 147

Yule–Furry branching process, See cascaded process(es)

zeta distribution, 33, 38